Papers
Topics
Authors
Recent
2000 character limit reached

The Impact of Event Data Partitioning on Privacy-aware Process Discovery (2507.06008v1)

Published 8 Jul 2025 in cs.CR, cs.AI, and cs.DB

Abstract: Information systems support the execution of business processes. The event logs of these executions generally contain sensitive information about customers, patients, and employees. The corresponding privacy challenges can be addressed by anonymizing the event logs while still retaining utility for process discovery. However, trading off utility and privacy is difficult: the higher the complexity of event log, the higher the loss of utility by anonymization. In this work, we propose a pipeline that combines anonymization and event data partitioning, where event abstraction is utilized for partitioning. By leveraging event abstraction, event logs can be segmented into multiple parts, allowing each sub-log to be anonymized separately. This pipeline preserves privacy while mitigating the loss of utility. To validate our approach, we study the impact of event partitioning on two anonymization techniques using three real-world event logs and two process discovery techniques. Our results demonstrate that event partitioning can bring improvements in process discovery utility for directly-follows-based anonymization techniques.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com