High-Fidelity and Generalizable Neural Surface Reconstruction with Sparse Feature Volumes (2507.05952v1)
Abstract: Generalizable neural surface reconstruction has become a compelling technique to reconstruct from few images without per-scene optimization, where dense 3D feature volume has proven effective as a global representation of scenes. However, the dense representation does not scale well to increasing voxel resolutions, severely limiting the reconstruction quality. We thus present a sparse representation method, that maximizes memory efficiency and enables significantly higher resolution reconstructions on standard hardware. We implement this through a two-stage approach: First training a network to predict voxel occupancies from posed images and associated depth maps, then computing features and performing volume rendering only in voxels with sufficiently high occupancy estimates. To support this sparse representation, we developed custom algorithms for efficient sampling, feature aggregation, and querying from sparse volumes-overcoming the dense-volume assumptions inherent in existing works. Experiments on public datasets demonstrate that our approach reduces storage requirements by more than 50 times without performance degradation, enabling reconstructions at $5123$ resolution compared to the typical $1283$ on similar hardware, and achieving superior reconstruction accuracy over current state-of-the-art methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.