Papers
Topics
Authors
Recent
2000 character limit reached

LeAD: The LLM Enhanced Planning System Converged with End-to-end Autonomous Driving (2507.05754v1)

Published 8 Jul 2025 in cs.RO and cs.AI

Abstract: A principal barrier to large-scale deployment of urban autonomous driving systems lies in the prevalence of complex scenarios and edge cases. Existing systems fail to effectively interpret semantic information within traffic contexts and discern intentions of other participants, consequently generating decisions misaligned with skilled drivers' reasoning patterns. We present LeAD, a dual-rate autonomous driving architecture integrating imitation learning-based end-to-end (E2E) frameworks with LLM augmentation. The high-frequency E2E subsystem maintains real-time perception-planning-control cycles, while the low-frequency LLM module enhances scenario comprehension through multi-modal perception fusion with HD maps and derives optimal decisions via chain-of-thought (CoT) reasoning when baseline planners encounter capability limitations. Our experimental evaluation in the CARLA Simulator demonstrates LeAD's superior handling of unconventional scenarios, achieving 71 points on Leaderboard V1 benchmark, with a route completion of 93%.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.