Tissue Concepts v2: a Supervised Foundation Model for whole slide images (2507.05742v1)
Abstract: Foundation models (FMs) are transforming the field of computational pathology by offering new approaches to analyzing histopathology images. Typically relying on weeks of training on large databases, the creation of FMs is a resource-intensive process in many ways. In this paper, we introduce the extension of our supervised foundation model, Tissue Concepts, to whole slide images, called Tissue Concepts v2 (TCv2), a supervised foundation model for whole slide images to address the issue above. TCv2 uses supervised, end-to-end multitask learning on slide-level labels. Training TCv2 uses a fraction of the training resources compared to self-supervised training. The presented model shows superior performance compared to SSL-trained models in cancer subtyping benchmarks and is fully trained on freely available data. Furthermore, a shared trained attention module provides an additional layer of explainability across different tasks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.