Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

SARA: Selective and Adaptive Retrieval-augmented Generation with Context Compression (2507.05633v1)

Published 8 Jul 2025 in cs.CL, cs.AI, and cs.IR

Abstract: Retrieval-augmented Generation (RAG) extends LLMs with external knowledge but faces key challenges: restricted effective context length and redundancy in retrieved documents. Pure compression-based approaches reduce input size but often discard fine-grained details essential for factual accuracy. We propose SARA, a unified RAG framework that balances local precision and global knowledge coverage under tight context budgets. SARA combines natural-language text snippets with semantic compression vectors to jointly enhance context efficiency and answer correctness. It represents contexts at two complementary levels: 1) fine-grained natural-language spans that preserve critical entities and numerical values, and 2) compact, interpretable vectors that summarize high-level semantics. An iterative evidence-selection module employs the compression vectors for dynamic reranking of contexts. Across 9 datasets and 5 open-source LLMs spanning 3 model families (Mistral, Llama, and Gemma), SARA consistently improves answer relevance (+17.71), answer correctness (+13.72), and semantic similarity (+15.53), demonstrating the importance of integrating textual and compressed representations for robust, context-efficient RAG.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube