Papers
Topics
Authors
Recent
2000 character limit reached

Structured Task Solving via Modular Embodied Intelligence: A Case Study on Rubik's Cube (2507.05607v1)

Published 8 Jul 2025 in cs.RO

Abstract: This paper presents Auto-RubikAI, a modular autonomous planning framework that integrates a symbolic Knowledge Base (KB), a vision-LLM (VLM), and a LLM to solve structured manipulation tasks exemplified by Rubik's Cube restoration. Unlike traditional robot systems based on predefined scripts, or modern approaches relying on pretrained networks and large-scale demonstration data, Auto-RubikAI enables interpretable, multi-step task execution with minimal data requirements and no prior demonstrations. The proposed system employs a KB module to solve group-theoretic restoration steps, overcoming LLMs' limitations in symbolic reasoning. A VLM parses RGB-D input to construct a semantic 3D scene representation, while the LLM generates structured robotic control code via prompt chaining. This tri-module architecture enables robust performance under spatial uncertainty. We deploy Auto-RubikAI in both simulation and real-world settings using a 7-DOF robotic arm, demonstrating effective Sim-to-Real adaptation without retraining. Experiments show a 79% end-to-end task success rate across randomized configurations. Compared to CFOP, DeepCubeA, and Two-Phase baselines, our KB-enhanced method reduces average solution steps while maintaining interpretability and safety. Auto-RubikAI provides a cost-efficient, modular foundation for embodied task planning in smart manufacturing, robotics education, and autonomous execution scenarios. Code, prompts, and hardware modules will be released upon publication.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.