Papers
Topics
Authors
Recent
2000 character limit reached

Self-Review Framework for Enhancing Instruction Following Capability of LLM (2507.05598v1)

Published 8 Jul 2025 in cs.CL and cs.AI

Abstract: Various techniques have been proposed to improve LLMs adherence to formatting and instruction constraints. One of the most effective approaches involves utilizing high-quality data generated by powerful models. However, such models often fail to fully comply with complex instructions in a single generation. To address this limitation, iterative revision methods have been introduced. Nevertheless, as the number of data points and revision iterations increases, the associated monetary costs grow significantly. As a resource-efficient alternative, methods have been proposed that leverage high-performance evaluation tools to compensate for the limited self-evaluation capabilities of open-source LLMs. However, these approaches often lead to a degradation in output quality due to excessive revision. To overcome these challenges, we propose Re5, a self-evaluation and revision framework designed to enhance instruction-following performance while preserving the quality of the generated content. Re5 extracts task and constraint components from user instructions, performs structural evaluations to prevent error accumulation, and applies fine-grained constraint-specific content evaluations followed by selective revisions. This process ensures precise and quality-preserving improvements. The final high-quality outputs are used for alignment tuning, enabling long-term alignment improvements through a data-centric iterative refinement loop. Experimental results demonstrate that Re5 achieves instruction-following performance comparable to models trained on data generated by GPT-4o-mini, a high-performance model, even with a small amount of data while maintaining response quality with a 64.24%-win rate over the non-revised initial responses. These results validate Re5 as an efficient and effective solution for enhancing instruction adherence with minimal external supervision.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.