Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GSVR: 2D Gaussian-based Video Representation for 800+ FPS with Hybrid Deformation Field (2507.05594v1)

Published 8 Jul 2025 in cs.CV

Abstract: Implicit neural representations for video have been recognized as a novel and promising form of video representation. Existing works pay more attention to improving video reconstruction quality but little attention to the decoding speed. However, the high computation of convolutional network used in existing methods leads to low decoding speed. Moreover, these convolution-based video representation methods also suffer from long training time, about 14 seconds per frame to achieve 35+ PSNR on Bunny. To solve the above problems, we propose GSVR, a novel 2D Gaussian-based video representation, which achieves 800+ FPS and 35+ PSNR on Bunny, only needing a training time of $2$ seconds per frame. Specifically, we propose a hybrid deformation field to model the dynamics of the video, which combines two motion patterns, namely the tri-plane motion and the polynomial motion, to deal with the coupling of camera motion and object motion in the video. Furthermore, we propose a Dynamic-aware Time Slicing strategy to adaptively divide the video into multiple groups of pictures(GOP) based on the dynamic level of the video in order to handle large camera motion and non-rigid movements. Finally, we propose quantization-aware fine-tuning to avoid performance reduction after quantization and utilize image codecs to compress Gaussians to achieve a compact representation. Experiments on the Bunny and UVG datasets confirm that our method converges much faster than existing methods and also has 10x faster decoding speed compared to other methods. Our method has comparable performance in the video interpolation task to SOTA and attains better video compression performance than NeRV.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.