A spool for every quotient: One-loop partition functions in AdS$_3$ gravity (2507.05364v1)
Abstract: The Wilson spool is a prescription for expressing one-loop determinants as topological line operators in three-dimensional gravity. We extend this program to describe massive spinning fields on all smooth, cusp-free, solutions of Euclidean gravity with a negative cosmological constant. Our prescription makes use of the expression of such solutions as a quotients of hyperbolic space. The result is a gauge-invariant topological operator, which can be promoted to an off-shell operator in the gravitational path integral about a given saddle-point. When evaluated on-shell, the Wilson spool reproduces and extends the known results of one-loop determinants on hyperbolic quotients. We motivate our construction of the Wilson spool from multiple perspectives: the Selberg trace formula, worldline quantum mechanics, and the quasinormal mode method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.