Papers
Topics
Authors
Recent
2000 character limit reached

PLACE: Prompt Learning for Attributed Community Search (2507.05311v1)

Published 7 Jul 2025 in cs.IR and cs.AI

Abstract: In this paper, we propose PLACE (Prompt Learning for Attributed Community Search), an innovative graph prompt learning framework for ACS. Enlightened by prompt-tuning in NLP, where learnable prompt tokens are inserted to contextualize NLP queries, PLACE integrates structural and learnable prompt tokens into the graph as a query-dependent refinement mechanism, forming a prompt-augmented graph. Within this prompt-augmented graph structure, the learned prompt tokens serve as a bridge that strengthens connections between graph nodes for the query, enabling the GNN to more effectively identify patterns of structural cohesiveness and attribute similarity related to the specific query. We employ an alternating training paradigm to optimize both the prompt parameters and the GNN jointly. Moreover, we design a divide-and-conquer strategy to enhance scalability, supporting the model to handle million-scale graphs. Extensive experiments on 9 real-world graphs demonstrate the effectiveness of PLACE for three types of ACS queries, where PLACE achieves higher F1 scores by 22% compared to the state-of-the-arts on average.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.