Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Neuralocks: Real-Time Dynamic Neural Hair Simulation (2507.05191v1)

Published 7 Jul 2025 in cs.GR and cs.CV

Abstract: Real-time hair simulation is a vital component in creating believable virtual avatars, as it provides a sense of immersion and authenticity. The dynamic behavior of hair, such as bouncing or swaying in response to character movements like jumping or walking, plays a significant role in enhancing the overall realism and engagement of virtual experiences. Current methods for simulating hair have been constrained by two primary approaches: highly optimized physics-based systems and neural methods. However, state-of-the-art neural techniques have been limited to quasi-static solutions, failing to capture the dynamic behavior of hair. This paper introduces a novel neural method that breaks through these limitations, achieving efficient and stable dynamic hair simulation while outperforming existing approaches. We propose a fully self-supervised method which can be trained without any manual intervention or artist generated training data allowing the method to be integrated with hair reconstruction methods to enable automatic end-to-end methods for avatar reconstruction. Our approach harnesses the power of compact, memory-efficient neural networks to simulate hair at the strand level, allowing for the simulation of diverse hairstyles without excessive computational resources or memory requirements. We validate the effectiveness of our method through a variety of hairstyle examples, showcasing its potential for real-world applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 8 likes.