Papers
Topics
Authors
Recent
Search
2000 character limit reached

Combinatorial results for zero-divisors regarding right zero elements of order-preserving transformations

Published 7 Jul 2025 in math.RA | (2507.04900v1)

Abstract: For any positive integer $n$, let $\mathcal{O}{n}$ be the semigroup of all order-preserving full transformations on $X{n}={1<\cdots <n}$. For any $1\leq k\leq n$, let $\pi_{k}\in \mathcal{O}{n}$ be the constant map defined by $x\pi{k}=k$ for all $x\in X_{n}$. In this paper, we introduce and study the sets of left, right, and two-sided zero-divisors of $\pi_{k}$: \begin{eqnarray*} \mathsf{L}{k} &=& { \alpha\in \mathcal{O}{n}:\alpha\beta=\pi_{k} \mbox{ for some }\beta\in \mathcal{O}{n} \setminus{\pi{i}} }, \mathsf{R}{k} &=& { \alpha\in \mathcal{O}{n}:\gamma\alpha=\pi_{k} \mbox{ for some }\ \gamma\in \mathcal{O}{n}\setminus{\pi{k}} }, \ \mbox{and} \ \mathsf{Z}{k}=\mathsf{L}{k}\cap \mathsf{R}{k}. \end{eqnarray*} We determine the structures and cardinalities of $\mathsf{L}{k}$, $\mathsf{R}{k}$ and $\mathsf{Z}{k}$ for each $1\leq k\leq n$. Furthermore, we compute the ranks of $\mathsf{R}{1}$,\, $\mathsf{R}{n}$,\, $\mathsf{Z}{1}$,\, $\mathsf{Z}{n}$ and $\mathsf{L}{k}$ for each $1\leq k\leq n$, because these are significant subsemigroups of $\mathcal{O}{n}$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.