Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dialogue-Based Multi-Dimensional Relationship Extraction from Novels (2507.04852v1)

Published 7 Jul 2025 in cs.CL

Abstract: Relation extraction is a crucial task in natural language processing, with broad applications in knowledge graph construction and literary analysis. However, the complex context and implicit expressions in novel texts pose significant challenges for automatic character relationship extraction. This study focuses on relation extraction in the novel domain and proposes a method based on LLMs. By incorporating relationship dimension separation, dialogue data construction, and contextual learning strategies, the proposed method enhances extraction performance. Leveraging dialogue structure information, it improves the model's ability to understand implicit relationships and demonstrates strong adaptability in complex contexts. Additionally, we construct a high-quality Chinese novel relation extraction dataset to address the lack of labeled resources and support future research. Experimental results show that our method outperforms traditional baselines across multiple evaluation metrics and successfully facilitates the automated construction of character relationship networks in novels.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.