Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Model Compression using Progressive Channel Pruning (2507.04792v1)

Published 7 Jul 2025 in cs.CV and cs.AI

Abstract: In this work, we propose a simple but effective channel pruning framework called Progressive Channel Pruning (PCP) to accelerate Convolutional Neural Networks (CNNs). In contrast to the existing channel pruning methods that prune channels only once per layer in a layer-by-layer fashion, our new progressive framework iteratively prunes a small number of channels from several selected layers, which consists of a three-step attempting-selecting-pruning pipeline in each iteration. In the attempting step, we attempt to prune a pre-defined number of channels from one layer by using any existing channel pruning methods and estimate the accuracy drop for this layer based on the labelled samples in the validation set. In the selecting step, based on the estimated accuracy drops for all layers, we propose a greedy strategy to automatically select a set of layers that will lead to less overall accuracy drop after pruning these layers. In the pruning step, we prune a small number of channels from these selected layers. We further extend our PCP framework to prune channels for the deep transfer learning methods like Domain Adversarial Neural Network (DANN), in which we effectively reduce the data distribution mismatch in the channel pruning process by using both labelled samples from the source domain and pseudo-labelled samples from the target domain. Our comprehensive experiments on two benchmark datasets demonstrate that our PCP framework outperforms the existing channel pruning approaches under both supervised learning and transfer learning settings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube