$q$-Congruences for Z.-W. Sun's generalized polynomials $w^{(α)}_k(x)$ (2507.04653v1)
Abstract: In 2022, Z.-W. Sun defined \begin{equation*} w_k{(\alpha)}{(x)}=\sum_{j=1}{k}w(k,j){\alpha}x{j-1}, \end{equation*} where $k,\alpha$ are positive integers and $w(k,j)=\frac{1}{j}\binom{k-1}{j-1}\binom{k+j}{j-1}$. Let $(x){0}=1$ and $(x){n}=x(x+1)\cdots(x+n-1)$ for all $n\geq 1$. In this paper, it is proved by $q$-congruences that for any positive integers ${\alpha,\beta, m,n,r}$, we have \begin{equation*} \frac{(2,n)}{n(n+1)(n+2)}\sum_{k=1}{n}kr(k+1)r(2k+1)w_{k}{(\alpha)}(x){m}\in\mathbb{Z}[x], \end{equation*} \begin{equation*} \frac{(2,n)}{n(n+1)(n+2)}\sum_{k=1}{n}(-1){k}kr(k+1)r(2k+1) w_{k}{(\alpha)}(x){m}\in\mathbb{Z}[x], \end{equation*} and \begin{equation*} \frac{2}{[n,n+1,\cdots,n+2\beta+1]}\sum_{k=1}{n}(k){\beta}r(k+\beta+1){\beta}r(k+\beta) \prod_{i=0}{2\beta-1}w_{k+i}{(\alpha)}(x)m\in\mathbb{Z}[x], \end{equation*} where $[n,n+1,\cdots,n+2\beta+1]$ is the least common multiple of $n$, $n+1$, $\cdots$, $n+2\beta+1$. Taking $r=\beta=1$ above will confirm some of Z.-W. Sun's conjectures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.