Papers
Topics
Authors
Recent
2000 character limit reached

MVL-Loc: Leveraging Vision-Language Model for Generalizable Multi-Scene Camera Relocalization (2507.04509v1)

Published 6 Jul 2025 in cs.CV and cs.AI

Abstract: Camera relocalization, a cornerstone capability of modern computer vision, accurately determines a camera's position and orientation (6-DoF) from images and is essential for applications in augmented reality (AR), mixed reality (MR), autonomous driving, delivery drones, and robotic navigation. Unlike traditional deep learning-based methods that regress camera pose from images in a single scene, which often lack generalization and robustness in diverse environments, we propose MVL-Loc, a novel end-to-end multi-scene 6-DoF camera relocalization framework. MVL-Loc leverages pretrained world knowledge from vision-LLMs (VLMs) and incorporates multimodal data to generalize across both indoor and outdoor settings. Furthermore, natural language is employed as a directive tool to guide the multi-scene learning process, facilitating semantic understanding of complex scenes and capturing spatial relationships among objects. Extensive experiments on the 7Scenes and Cambridge Landmarks datasets demonstrate MVL-Loc's robustness and state-of-the-art performance in real-world multi-scene camera relocalization, with improved accuracy in both positional and orientational estimates.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.