The Bilinear Hilbert-Carleson operator along curves. The purely non-zero curvature case (2507.04467v1)
Abstract: In this paper, we provide the maximal boundedness range (up to end-points) for the Bilinear Hilbert-Carleson operator along curves in the (purely) non-zero curvature setting. More precisely, we show that the operator $$ BHC_{[\vec{a},\vec{\alpha}]}(f_1,f_2)(x) := \sup_{\lambda\in\mathbb{R}} \left|\,p.v.\, \int_{\mathbb{R}} f_1(x - a_1 t{\alpha_1}) \,f_2(x - a_2 t{\alpha_2}) \,e{i\,\lambda\,a_3 \,t{\alpha_3}} \,\frac{dt}{t}\right|$$ obeys the bounds $$|BHC_{[\vec{a},\vec{\alpha}]} (f_1,f_2)|{Lr} \lesssim{\vec{a} \,\vec{\alpha},r,p_1,p_2} |f_1|{L{p_1}}\,|f_2|{L{p_2}}$$ whenever $\vec{a}=(a_1,a_2,a_3),\,\vec{\alpha}=(\alpha_1,\alpha_2,\alpha_3)\in (\mathbb{R}\setminus{0})3$ with $\vec{\alpha}$ having pairwise distinct coordinates and for any H\"older range $\frac{1}{p_1}+\frac{1}{p_2}=\frac{1}{r}$ with $1<p_1,p_2<\infty$ and $\frac{1}{2}<r<\infty$. This result is achieved via the Rank II LGC method introduced in arXiv:2308.10706.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.