Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Mission-Aligned Learning-Informed Control of Autonomous Systems: Formulation and Foundations (2507.04356v1)

Published 6 Jul 2025 in math.OC, cs.AI, and cs.RO

Abstract: Research, innovation and practical capital investment have been increasing rapidly toward the realization of autonomous physical agents. This includes industrial and service robots, unmanned aerial vehicles, embedded control devices, and a number of other realizations of cybernetic/mechatronic implementations of intelligent autonomous devices. In this paper, we consider a stylized version of robotic care, which would normally involve a two-level Reinforcement Learning procedure that trains a policy for both lower level physical movement decisions as well as higher level conceptual tasks and their sub-components. In order to deliver greater safety and reliability in the system, we present the general formulation of this as a two-level optimization scheme which incorporates control at the lower level, and classical planning at the higher level, integrated with a capacity for learning. This synergistic integration of multiple methodologies -- control, classical planning, and RL -- presents an opportunity for greater insight for algorithm development, leading to more efficient and reliable performance. Here, the notion of reliability pertains to physical safety and interpretability into an otherwise black box operation of autonomous agents, concerning users and regulators. This work presents the necessary background and general formulation of the optimization framework, detailing each component and its integration with the others.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.