Papers
Topics
Authors
Recent
2000 character limit reached

SmartThinker: Learning to Compress and Preserve Reasoning by Step-Level Length Control (2507.04348v1)

Published 6 Jul 2025 in cs.AI and cs.CL

Abstract: Large reasoning models (LRMs) have exhibited remarkable reasoning capabilities through inference-time scaling, but this progress has also introduced considerable redundancy and inefficiency into their reasoning processes, resulting in substantial computational waste. Previous work has attempted to mitigate this issue by penalizing the overall length of generated samples during reinforcement learning (RL), with the goal of encouraging a more concise chains of thought. However, we observe that such global length penalty often lead to excessive compression of critical reasoning steps while preserving unnecessary details in simpler ones, yielding a suboptimal trade-off between accuracy and efficiency. To address this issue, we propose SmartThinker, a two-stage learnable framework designed to enable fine-grained control over the length of reasoning chains based on the importance of each individual step. In the first stage, SmartThinker adapts a reasoning model to a short-form reasoning mode through rejection sampling combined with supervised fine-tuning (SFT). In the second stage, SmartThinker applies Step-Level Length Control Policy Optimization (SCPO) to refine the model output distribution, which increases the proportion of length allocated to critical steps while reducing redundancy in less important ones. SCPO consists of four core components: an online importance estimator, a step-level length control reward function, a step-level generalized advantage estimation (S-GAE) and a difficulty-adaptive clipping strategy. Working in concert, these components enable SCPO to implement differentiated length control across reasoning steps. Empirical results across multiple reasoning benchmarks and various backbone models demonstrate that SmartThinker significantly reduces redundant reasoning while achieving comparable or even superior performance to existing methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.