Solving the Gross-Pitaevskii Equation with Quantic Tensor Trains: Ground States and Nonlinear Dynamics (2507.04279v1)
Abstract: We develop a tensor network framework based on the quantic tensor train (QTT) format to efficiently solve the Gross-Pitaevskii equation (GPE), which governs Bose-Einstein condensates under mean-field theory. By adapting time-dependent variational principle (TDVP) and gradient descent methods, we accurately handle the GPE's nonlinearities within the QTT structure. Our approach enables high-resolution simulations with drastically reduced computational cost. We benchmark ground states and dynamics of BECs--including vortex lattice formation and breathing modes--demonstrating superior performance over conventional grid-based methods and stable long-time evolution due to saturating bond dimensions. This establishes QTT as a powerful tool for nonlinear quantum simulations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.