Papers
Topics
Authors
Recent
2000 character limit reached

Transformer with Koopman-Enhanced Graph Convolutional Network for Spatiotemporal Dynamics Forecasting (2507.03855v1)

Published 5 Jul 2025 in cs.LG and stat.ML

Abstract: Spatiotemporal dynamics forecasting is inherently challenging, particularly in systems defined over irregular geometric domains, due to the need to jointly capture complex spatial correlations and nonlinear temporal dynamics. To tackle these challenges, we propose TK-GCN, a two-stage framework that integrates geometry-aware spatial encoding with long-range temporal modeling. In the first stage, a Koopman-enhanced Graph Convolutional Network (K-GCN) is developed to embed the high-dimensional dynamics distributed on spatially irregular domains into a latent space where the evolution of system states is approximately linear. By leveraging Koopman operator theory, this stage enhances the temporal consistency during the latent learning. In the second stage, a Transformer module is employed to model the temporal progression within the Koopman-encoded latent space. Through the self-attention mechanism, the Transformer captures long-range temporal dependencies, enabling accurate forecasting over extended horizons. We evaluate TK-GCN in spatiotemporal cardiac dynamics forecasting and benchmark its performance against several state-of-the-art baselines. Experimental results and ablation studies show that TK-GCN consistently delivers superior predictive accuracy across a range of forecast horizons, demonstrating its capability to effectively model complex spatial structures and nonlinear temporal dynamics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.