Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Effective Capacitance Modeling Using Graph Neural Networks (2507.03787v1)

Published 4 Jul 2025 in cs.LG

Abstract: Static timing analysis is a crucial stage in the VLSI design flow that verifies the timing correctness of circuits. Timing analysis depends on the placement and routing of the design, but at the same time, placement and routing efficiency depend on the final timing performance. VLSI design flows can benefit from timing-related prediction to better perform the earlier stages of the design flow. Effective capacitance is an essential input for gate delay calculation, and finding exact values requires routing or routing estimates. In this work, we propose the first GNN-based post-layout effective capacitance modeling method, GNN-Ceff, that achieves significant speed gains due to GPU parallelization while also providing better accuracy than current heuristics. GNN-Ceff parallelization achieves 929x speedup on real-life benchmarks over the state-of-the-art method run serially.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.