Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Skewed Score: A statistical framework to assess autograders (2507.03772v1)

Published 4 Jul 2025 in cs.LG and stat.ML

Abstract: The evaluation of LLM outputs is increasingly performed by other LLMs, a setup commonly known as "LLM-as-a-judge", or autograders. While autograders offer a scalable alternative to human evaluation, they have shown mixed reliability and may exhibit systematic biases, depending on response type, scoring methodology, domain specificity, and other factors. In this paper we propose a statistical framework based on Bayesian generalised linear models (GLMs) that enables researchers to simultaneously assess their autograders while also addressing their primary research questions (e.g., LLM evaluation). Our approach models evaluation outcomes (e.g., scores or pairwise preferences) as a function of properties of the grader (e.g., human vs. autograder) and the evaluated item (e.g., response length or the LLM that generated it), allowing for explicit quantification of scoring differences and potential biases within a unified framework. In addition, our method can be used to augment traditional reliability metrics such as inter-rater agreement, by providing uncertainty estimates and clarifying the source of disagreement. Overall, this approach contributes to more robust and interpretable use of autograders in LLM evaluation, enabling both performance analysis and bias detection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 posts and received 36 likes.