Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Blackbox Dataset Inference for LLM (2507.03619v1)

Published 4 Jul 2025 in cs.CR

Abstract: Today, the training of LLMs can involve personally identifiable information and copyrighted material, incurring dataset misuse. To mitigate the problem of dataset misuse, this paper explores \textit{dataset inference}, which aims to detect if a suspect model $\mathcal{M}$ used a victim dataset $\mathcal{D}$ in training. Previous research tackles dataset inference by aggregating results of membership inference attacks (MIAs) -- methods to determine whether individual samples are a part of the training dataset. However, restricted by the low accuracy of MIAs, previous research mandates grey-box access to $\mathcal{M}$ to get intermediate outputs (probabilities, loss, perplexity, etc.) for obtaining satisfactory results. This leads to reduced practicality, as LLMs, especially those deployed for profits, have limited incentives to return the intermediate outputs. In this paper, we propose a new method of dataset inference with only black-box access to the target model (i.e., assuming only the text-based responses of the target model are available). Our method is enabled by two sets of locally built reference models, one set involving $\mathcal{D}$ in training and the other not. By measuring which set of reference model $\mathcal{M}$ is closer to, we determine if $\mathcal{M}$ used $\mathcal{D}$ for training. Evaluations of real-world LLMs in the wild show that our method offers high accuracy in all settings and presents robustness against bypassing attempts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.