Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

You May Use the Same Channel Knowledge Map for Environment-Aware NLoS Sensing and Communication (2507.03589v1)

Published 4 Jul 2025 in cs.IT, eess.SP, and math.IT

Abstract: As one of the key usage scenarios for the sixth generation (6G) wireless networks, integrated sensing and communication (ISAC) provides an efficient framework to achieve simultaneous wireless sensing and communication. However, traditional wireless sensing techniques mainly rely on the line-of-sight (LoS) assumptions, i.e., the sensing targets are directly visible to both the sensing transmitter and receiver. This hinders ISAC systems to be applied in complex environments such as the urban low-altitude airspace, which usually suffers from signal blockage and non-line-of-sight (NLoS) multi-path propagation. To address this challenge, in this paper, we propose a novel approach to enable environment-aware NLoS ISAC by leveraging the new technique called channel knowledge map (CKM), which was originally proposed for environment-aware wireless communications. One major novelty of our proposed method is that the same CKM built for wireless communication can be directly used to enable NLoS wireless sensing, thus enjoying the benefits of ``killing two birds with one stone''. To this end, the sensing targets are treated as virtual user equipment (UE), and the wireless communication channel priors are transformed into the sensing channel priors, allowing one single CKM to serve dual purposes. We illustrate our proposed framework by a specific CKM called \emph{channel angle-delay map} (CADM). Specifically, the proposed framework utilizes CADM to derive angle-delay priors of the sensing channel by exploiting the relationship between communication and sensing angle-delay distributions, enabling sensing target localization in the challenging NLoS environment. Extensive simulation results demonstrate significant performance improvements over classic geometry-based sensing methods, which is further validated by Cram\'er-Rao Lower Bound (CRLB) analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.