Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Decoupled Relative Learning Rate Schedules (2507.03526v1)

Published 4 Jul 2025 in cs.LG

Abstract: In this work, we introduce a novel approach for optimizing LLM training by adjusting learning rates across weights of different components in Transformer models. Traditional methods often apply a uniform learning rate across all network layers, potentially overlooking the unique dynamics of each part. Remarkably, our introduced relative learning rates, RLRS, method accelerates the training process by up to $23\%$, particularly in complex models such as Mixture of Experts (MoE). Hyperparameters of RLRS can be efficiently tuned on smaller models and then effectively reused on models up to $27\times$ larger. This simple and effective method results in a substantial reduction in training time and computational resources, offering a practical and scalable solution for optimizing large-scale neural networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.