Papers
Topics
Authors
Recent
2000 character limit reached

Exploring the Effect of Context-Awareness and Popularity Calibration on Popularity Bias in POI Recommendations (2507.03503v1)

Published 4 Jul 2025 in cs.IR

Abstract: Point-of-interest (POI) recommender systems help users discover relevant locations, but their effectiveness is often compromised by popularity bias, which disadvantages less popular, yet potentially meaningful places. This paper addresses this challenge by evaluating the effectiveness of context-aware models and calibrated popularity techniques as strategies for mitigating popularity bias. Using four real-world POI datasets (Brightkite, Foursquare, Gowalla, and Yelp), we analyze the individual and combined effects of these approaches on recommendation accuracy and popularity bias. Our results reveal that context-aware models cannot be considered a uniform solution, as the models studied exhibit divergent impacts on accuracy and bias. In contrast, calibration techniques can effectively align recommendation popularity with user preferences, provided there is a careful balance between accuracy and bias mitigation. Notably, the combination of calibration and context-awareness yields recommendations that balance accuracy and close alignment with the users' popularity profiles, i.e., popularity calibration.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.