Long-time behaviour and bifurcation analysis of a two-species aggregation-diffusion system on the torus (2507.03431v1)
Abstract: We investigate stationary states, including their existence and stability, in a class of nonlocal aggregation-diffusion equations with linear diffusion and symmetric nonlocal interactions. For the scalar case, we extend previous results by showing that key model features, such as existence, regularity, bifurcation structure, and stability exchange, continue to hold under a mere bounded variation hypothesis. For the corresponding two-species system, we carry out a fully rigorous bifurcation analysis using the bifurcation theory of Crandall & Rabinowitz. This framework allows us to classify all solution branches from homogeneous states, with particular attention given to those arising from the self-interaction strength and the cross-interaction strength, as well as the stability of the branch at a point of critical stability. The analysis relies on an equivalent classification of solutions through fixed points of a nonlinear map, followed by a careful derivation of Fr\'echet derivatives up to third order. An interesting application to cell-cell adhesion arises from our analysis, yielding stable segregation patterns that appear at the onset of cell sorting in a modelling regime where all interactions are purely attractive.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.