Papers
Topics
Authors
Recent
2000 character limit reached

SI-Agent: An Agentic Framework for Feedback-Driven Generation and Tuning of Human-Readable System Instructions for Large Language Models (2507.03223v1)

Published 3 Jul 2025 in cs.AI and cs.LG

Abstract: System Instructions (SIs), or system prompts, are pivotal for guiding LLMs but manual crafting is resource-intensive and often suboptimal. Existing automated methods frequently generate non-human-readable "soft prompts," sacrificing interpretability. This paper introduces SI-Agent, a novel agentic framework designed to automatically generate and iteratively refine human-readable SIs through a feedback-driven loop. SI-Agent employs three collaborating agents: an Instructor Agent, an Instruction Follower Agent (target LLM), and a Feedback/Reward Agent evaluating task performance and optionally SI readability. The framework utilizes iterative cycles where feedback guides the Instructor's refinement strategy (e.g., LLM-based editing, evolutionary algorithms). We detail the framework's architecture, agent roles, the iterative refinement process, and contrast it with existing methods. We present experimental results validating SI-Agent's effectiveness, focusing on metrics for task performance, SI readability, and efficiency. Our findings indicate that SI-Agent generates effective, readable SIs, offering a favorable trade-off between performance and interpretability compared to baselines. Potential implications include democratizing LLM customization and enhancing model transparency. Challenges related to computational cost and feedback reliability are acknowledged.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.