Image-driven Robot Drawing with Rapid Lognormal Movements (2507.03166v1)
Abstract: Large image generation and vision models, combined with differentiable rendering technologies, have become powerful tools for generating paths that can be drawn or painted by a robot. However, these tools often overlook the intrinsic physicality of the human drawing/writing act, which is usually executed with skillful hand/arm gestures. Taking this into account is important for the visual aesthetics of the results and for the development of closer and more intuitive artist-robot collaboration scenarios. We present a method that bridges this gap by enabling gradient-based optimization of natural human-like motions guided by cost functions defined in image space. To this end, we use the sigma-lognormal model of human hand/arm movements, with an adaptation that enables its use in conjunction with a differentiable vector graphics (DiffVG) renderer. We demonstrate how this pipeline can be used to generate feasible trajectories for a robot by combining image-driven objectives with a minimum-time smoothing criterion. We demonstrate applications with generation and robotic reproduction of synthetic graffiti as well as image abstraction.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.