Papers
Topics
Authors
Recent
2000 character limit reached

Challenges for AI in Multimodal STEM Assessments: a Human-AI Comparison (2507.03013v1)

Published 2 Jul 2025 in cs.CY and cs.AI

Abstract: Generative AI systems have rapidly advanced, with multimodal input capabilities enabling reasoning beyond text-based tasks. In education, these advancements could influence assessment design and question answering, presenting both opportunities and challenges. To investigate these effects, we introduce a high-quality dataset of 201 university-level STEM questions, manually annotated with features such as image type, role, problem complexity, and question format. Our study analyzes how these features affect generative AI performance compared to students. We evaluate four model families with five prompting strategies, comparing results to the average of 546 student responses per question. Although the best model correctly answers on average 58.5 % of the questions using majority vote aggregation, human participants consistently outperform AI on questions involving visual components. Interestingly, human performance remains stable across question features but varies by subject, whereas AI performance is susceptible to both subject matter and question features. Finally, we provide actionable insights for educators, demonstrating how question design can enhance academic integrity by leveraging features that challenge current AI systems without increasing the cognitive burden for students.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.