ManifoldMind: Dynamic Hyperbolic Reasoning for Trustworthy Recommendations (2507.02014v1)
Abstract: We introduce ManifoldMind, a probabilistic geometric recommender system for exploratory reasoning over semantic hierarchies in hyperbolic space. Unlike prior methods with fixed curvature and rigid embeddings, ManifoldMind represents users, items, and tags as adaptive-curvature probabilistic spheres, enabling personalised uncertainty modeling and geometry-aware semantic exploration. A curvature-aware semantic kernel supports soft, multi-hop inference, allowing the model to explore diverse conceptual paths instead of overfitting to shallow or direct interactions. Experiments on four public benchmarks show superior NDCG, calibration, and diversity compared to strong baselines. ManifoldMind produces explicit reasoning traces, enabling transparent, trustworthy, and exploration-driven recommendations in sparse or abstract domains.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.