Papers
Topics
Authors
Recent
2000 character limit reached

A Comprehensive Survey on Network Traffic Synthesis: From Statistical Models to Deep Learning (2507.01976v1)

Published 23 Jun 2025 in cs.NI and cs.LG

Abstract: Synthetic network traffic generation has emerged as a promising alternative for various data-driven applications in the networking domain. It enables the creation of synthetic data that preserves real-world characteristics while addressing key challenges such as data scarcity, privacy concerns, and purity constraints associated with real data. In this survey, we provide a comprehensive review of synthetic network traffic generation approaches, covering essential aspects such as data types, generation models, and evaluation methods. With the rapid advancements in AI and machine learning, we focus particularly on deep learning-based techniques while also providing a detailed discussion of statistical methods and their extensions, including commercially available tools. Furthermore, we highlight open challenges in this domain and discuss potential future directions for further research and development. This survey serves as a foundational resource for researchers and practitioners, offering a structured analysis of existing methods, challenges, and opportunities in synthetic network traffic generation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.