Papers
Topics
Authors
Recent
2000 character limit reached

A Hybrid Ensemble Learning Framework for Image-Based Solar Panel Classification (2507.01778v1)

Published 2 Jul 2025 in cs.IT, cs.CV, and math.IT

Abstract: The installation of solar energy systems is on the rise, and therefore, appropriate maintenance techniques are required to be used in order to maintain maximum performance levels. One of the major challenges is the automated discrimination between clean and dirty solar panels. This paper presents a novel Dual Ensemble Neural Network (DENN) to classify solar panels using image-based features. The suggested approach utilizes the advantages offered by various ensemble models by integrating them into a dual framework, aimed at improving both classification accuracy and robustness. The DENN model is evaluated in comparison to current ensemble methods, showcasing its superior performance across a range of assessment metrics. The proposed approach performs the best compared to other methods and reaches state-of-the-art accuracy on experimental results for the Deep Solar Eye dataset, effectively serving predictive maintenance purposes in solar energy systems. It reveals the potential of hybrid ensemble learning techniques to further advance the prospects of automated solar panel inspections as a scalable solution to real-world challenges.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.