Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Targeted tuning of random forests for quantile estimation and prediction intervals (2507.01430v1)

Published 2 Jul 2025 in stat.ME, stat.AP, and stat.ML

Abstract: We present a novel tuning procedure for random forests (RFs) that improves the accuracy of estimated quantiles and produces valid, relatively narrow prediction intervals. While RFs are typically used to estimate mean responses (conditional on covariates), they can also be used to estimate quantiles by estimating the full distribution of the response. However, standard approaches for building RFs often result in excessively biased quantile estimates. To reduce this bias, our proposed tuning procedure minimizes "quantile coverage loss" (QCL), which we define as the estimated bias of the marginal quantile coverage probability estimate based on the out-of-bag sample. We adapt QCL tuning to handle censored data and demonstrate its use with random survival forests. We show that QCL tuning results in quantile estimates with more accurate coverage probabilities than those achieved using default parameter values or traditional tuning (using MSPE for uncensored data and C-index for censored data), while also reducing the estimated MSE of these coverage probabilities. We discuss how the superior performance of QCL tuning is linked to its alignment with the estimation goal. Finally, we explore the validity and width of prediction intervals created using this method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: