Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Randomized subspace correction methods for convex optimization (2507.01415v1)

Published 2 Jul 2025 in math.OC, cs.NA, and math.NA

Abstract: This paper introduces an abstract framework for randomized subspace correction methods for convex optimization, which unifies and generalizes a broad class of existing algorithms, including domain decomposition, multigrid, and block coordinate descent methods. We provide a convergence rate analysis ranging from minimal assumptions to more practical settings, such as sharpness and strong convexity. While most existing studies on block coordinate descent methods focus on nonoverlapping decompositions and smooth or strongly convex problems, our framework extends to more general settings involving arbitrary space decompositions, inexact local solvers, and problems with limited smoothness or convexity. The proposed framework is broadly applicable to convex optimization problems arising in areas such as nonlinear partial differential equations, imaging, and data science.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: