Papers
Topics
Authors
Recent
2000 character limit reached

An in depth look at the Procrustes-Wasserstein distance: properties and barycenters (2507.00894v1)

Published 1 Jul 2025 in stat.ML and cs.LG

Abstract: Due to its invariance to rigid transformations such as rotations and reflections, Procrustes-Wasserstein (PW) was introduced in the literature as an optimal transport (OT) distance, alternative to Wasserstein and more suited to tasks such as the alignment and comparison of point clouds. Having that application in mind, we carefully build a space of discrete probability measures and show that over that space PW actually is a distance. Algorithms to solve the PW problems already exist, however we extend the PW framework by discussing and testing several initialization strategies. We then introduce the notion of PW barycenter and detail an algorithm to estimate it from the data. The result is a new method to compute representative shapes from a collection of point clouds. We benchmark our method against existing OT approaches, demonstrating superior performance in scenarios requiring precise alignment and shape preservation. We finally show the usefulness of the PW barycenters in an archaeological context. Our results highlight the potential of PW in boosting 2D and 3D point cloud analysis for machine learning and computational geometry applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.