Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Twill: Scheduling Compound AI Systems on Heterogeneous Mobile Edge Platforms (2507.00491v1)

Published 1 Jul 2025 in cs.MA, cs.AI, cs.CV, and cs.PF

Abstract: Compound AI (cAI) systems chain multiple AI models to solve complex problems. cAI systems are typically composed of deep neural networks (DNNs), transformers, and LLMs, exhibiting a high degree of computational diversity and dynamic workload variation. Deploying cAI services on mobile edge platforms poses a significant challenge in scheduling concurrent DNN-transformer inference tasks, which arrive dynamically in an unknown sequence. Existing mobile edge AI inference strategies manage multi-DNN or transformer-only workloads, relying on design-time profiling, and cannot handle concurrent inference of DNNs and transformers required by cAI systems. In this work, we address the challenge of scheduling cAI systems on heterogeneous mobile edge platforms. We present Twill, a run-time framework to handle concurrent inference requests of cAI workloads through task affinity-aware cluster mapping and migration, priority-aware task freezing/unfreezing, and DVFS, while minimizing inference latency within power budgets. We implement and deploy our Twill framework on the Nvidia Jetson Orin NX platform. We evaluate Twill against state-of-the-art edge AI inference techniques over contemporary DNNs and LLMs, reducing inference latency by 54% on average, while honoring power budgets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube