Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Efficient Random-Order Enumeration for Join Queries (2507.00489v1)

Published 1 Jul 2025 in cs.DB

Abstract: In many data analysis pipelines, a basic and time-consuming process is to produce join results and feed them into downstream tasks. Numerous enumeration algorithms have been developed for this purpose. To be a statistically meaningful representation of the whole join result, the result tuples are required to be enumerated in uniformly random order. However, existing studies lack an efficient random-order enumeration algorithm with a worst-case runtime guarantee for (cyclic) join queries. In this paper, we study the problem of enumerating the results of a join query in random order. We develop an efficient random-order enumeration algorithm for join queries with no large hidden constants in its complexity, achieving expected $O(\frac{\mathrm{AGM}(Q)}{|Res(Q)|}\log2|Q|)$ delay, $O(\mathrm{AGM}(Q)\log|Q|)$ total running time after $O(|Q|\log|Q|)$-time index construction, where $|Q|$ is the size of input, $\mathrm{AGM}(Q)$ is the AGM bound, and $|Res(Q)|$ is the size of the join result. We prove that our algorithm is near-optimal in the worst case, under the combinatorial $k$-clique hypothesis. Our algorithm requires no query-specific preprocessing and can be flexibly adapted to many common database indexes with only minor modifications. We also devise two non-trivial techniques to speed up the enumeration, and provide an experimental study on our enumeration algorithm along with the speed-up techniques. The experimental results show that our algorithm, enhanced with the proposed techniques, significantly outperforms existing state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube