Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diversity Conscious Refined Random Forest (2507.00467v1)

Published 1 Jul 2025 in cs.LG and cs.AI

Abstract: Random Forest (RF) is a widely used ensemble learning technique known for its robust classification performance across diverse domains. However, it often relies on hundreds of trees and all input features, leading to high inference cost and model redundancy. In this work, our goal is to grow trees dynamically only on informative features and then enforce maximal diversity by clustering and retaining uncorrelated trees. Therefore, we propose a Refined Random Forest Classifier that iteratively refines itself by first removing the least informative features and then analytically determines how many new trees should be grown, followed by correlation-based clustering to remove redundant trees. The classification accuracy of our model was compared against the standard RF on the same number of trees. Experiments on 8 multiple benchmark datasets, including binary and multiclass datasets, demonstrate that the proposed model achieves improved accuracy compared to standard RF.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.