Affine-Invariant Global Non-Asymptotic Convergence Analysis of BFGS under Self-Concordance (2507.00361v1)
Abstract: In this paper, we establish global non-asymptotic convergence guarantees for the BFGS quasi-Newton method without requiring strong convexity or the Lipschitz continuity of the gradient or Hessian. Instead, we consider the setting where the objective function is strictly convex and strongly self-concordant. For an arbitrary initial point and any arbitrary positive-definite initial Hessian approximation, we prove global linear and superlinear convergence guarantees for BFGS when the step size is determined using a line search scheme satisfying the weak Wolfe conditions. Moreover, all our global guarantees are affine-invariant, with the convergence rates depending solely on the initial error and the strongly self-concordant constant. Our results extend the global non-asymptotic convergence theory of BFGS beyond traditional assumptions and, for the first time, establish affine-invariant convergence guarantees aligning with the inherent affine invariance of the BFGS method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.