Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

CGEarthEye:A High-Resolution Remote Sensing Vision Foundation Model Based on the Jilin-1 Satellite Constellation (2507.00356v1)

Published 1 Jul 2025 in cs.CV and cs.AI

Abstract: Deep learning methods have significantly advanced the development of intelligent rinterpretation in remote sensing (RS), with foundational model research based on large-scale pre-training paradigms rapidly reshaping various domains of Earth Observation (EO). However, compared to the open accessibility and high spatiotemporal coverage of medium-resolution data, the limited acquisition channels for ultra-high-resolution optical RS imagery have constrained the progress of high-resolution remote sensing vision foundation models (RSVFM). As the world's largest sub-meter-level commercial RS satellite constellation, the Jilin-1 constellation possesses abundant sub-meter-level image resources. This study proposes CGEarthEye, a RSVFM framework specifically designed for Jilin-1 satellite characteristics, comprising five backbones with different parameter scales with totaling 2.1 billion parameters. To enhance the representational capacity of the foundation model, we developed JLSSD, the first 15-million-scale multi-temporal self-supervised learning (SSL) dataset featuring global coverage with quarterly temporal sampling within a single year, constructed through multi-level representation clustering and sampling strategies. The framework integrates seasonal contrast, augmentation-based contrast, and masked patch token contrastive strategies for pre-training. Comprehensive evaluations across 10 benchmark datasets covering four typical RS tasks demonstrate that the CGEarthEye consistently achieves state-of-the-art (SOTA) performance. Further analysis reveals CGEarthEye's superior characteristics in feature visualization, model convergence, parameter efficiency, and practical mapping applications. This study anticipates that the exceptional representation capabilities of CGEarthEye will facilitate broader and more efficient applications of Jilin-1 data in traditional EO application.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube