Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 68 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Moment Sampling in Video LLMs for Long-Form Video QA (2507.00033v1)

Published 18 Jun 2025 in cs.CV, cs.AI, and cs.CL

Abstract: Recent advancements in video LLMs (Video LLMs) have significantly advanced the field of video question answering (VideoQA). While existing methods perform well on short videos, they often struggle with long-range reasoning in longer videos. To scale Video LLMs for longer video content, frame sub-sampling (selecting frames at regular intervals) is commonly used. However, this approach is suboptimal, often leading to the loss of crucial frames or the inclusion of redundant information from multiple similar frames. Missing key frames impairs the model's ability to answer questions accurately, while redundant frames lead the model to focus on irrelevant video segments and increase computational resource consumption. In this paper, we investigate the use of a general-purpose text-to-video moment retrieval model to guide the frame sampling process. We propose "moment sampling", a novel, model-agnostic approach that enables the model to select the most relevant frames according to the context of the question. Specifically, we employ a lightweight moment retrieval model to prioritize frame selection. By focusing on the frames most pertinent to the given question, our method enhances long-form VideoQA performance in Video LLMs. Through extensive experiments on four long-form VideoQA datasets, using four state-of-the-art Video LLMs, we demonstrate the effectiveness of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube