Papers
Topics
Authors
Recent
2000 character limit reached

MVGBench: Comprehensive Benchmark for Multi-view Generation Models (2507.00006v1)

Published 11 Jun 2025 in cs.GR, cs.LG, and eess.IV

Abstract: We propose MVGBench, a comprehensive benchmark for multi-view image generation models (MVGs) that evaluates 3D consistency in geometry and texture, image quality, and semantics (using vision LLMs). Recently, MVGs have been the main driving force in 3D object creation. However, existing metrics compare generated images against ground truth target views, which is not suitable for generative tasks where multiple solutions exist while differing from ground truth. Furthermore, different MVGs are trained on different view angles, synthetic data and specific lightings -- robustness to these factors and generalization to real data are rarely evaluated thoroughly. Without a rigorous evaluation protocol, it is also unclear what design choices contribute to the progress of MVGs. MVGBench evaluates three different aspects: best setup performance, generalization to real data and robustness. Instead of comparing against ground truth, we introduce a novel 3D self-consistency metric which compares 3D reconstructions from disjoint generated multi-views. We systematically compare 12 existing MVGs on 4 different curated real and synthetic datasets. With our analysis, we identify important limitations of existing methods specially in terms of robustness and generalization, and we find the most critical design choices. Using the discovered best practices, we propose ViFiGen, a method that outperforms all evaluated MVGs on 3D consistency. Our code, model, and benchmark suite will be publicly released.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.