Papers
Topics
Authors
Recent
Search
2000 character limit reached

Provably Efficient and Agile Randomized Q-Learning

Published 30 Jun 2025 in cs.LG | (2506.24005v1)

Abstract: While Bayesian-based exploration often demonstrates superior empirical performance compared to bonus-based methods in model-based reinforcement learning (RL), its theoretical understanding remains limited for model-free settings. Existing provable algorithms either suffer from computational intractability or rely on stage-wise policy updates which reduce responsiveness and slow down the learning process. In this paper, we propose a novel variant of Q-learning algorithm, refereed to as RandomizedQ, which integrates sampling-based exploration with agile, step-wise, policy updates, for episodic tabular RL. We establish an $\widetilde{O}(\sqrt{H5SAT})$ regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the episode length, and $T$ is the total number of episodes. In addition, we present a logarithmic regret bound under a mild positive sub-optimality condition on the optimal Q-function. Empirically, RandomizedQ exhibits outstanding performance compared to existing Q-learning variants with both bonus-based and Bayesian-based exploration on standard benchmarks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.