Attestable Audits: Verifiable AI Safety Benchmarks Using Trusted Execution Environments (2506.23706v1)
Abstract: Benchmarks are important measures to evaluate safety and compliance of AI models at scale. However, they typically do not offer verifiable results and lack confidentiality for model IP and benchmark datasets. We propose Attestable Audits, which run inside Trusted Execution Environments and enable users to verify interaction with a compliant AI model. Our work protects sensitive data even when model provider and auditor do not trust each other. This addresses verification challenges raised in recent AI governance frameworks. We build a prototype demonstrating feasibility on typical audit benchmarks against Llama-3.1.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.