Papers
Topics
Authors
Recent
2000 character limit reached

Attestable Audits: Verifiable AI Safety Benchmarks Using Trusted Execution Environments (2506.23706v1)

Published 30 Jun 2025 in cs.AI, cs.CL, and cs.CR

Abstract: Benchmarks are important measures to evaluate safety and compliance of AI models at scale. However, they typically do not offer verifiable results and lack confidentiality for model IP and benchmark datasets. We propose Attestable Audits, which run inside Trusted Execution Environments and enable users to verify interaction with a compliant AI model. Our work protects sensitive data even when model provider and auditor do not trust each other. This addresses verification challenges raised in recent AI governance frameworks. We build a prototype demonstrating feasibility on typical audit benchmarks against Llama-3.1.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 6 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: