Papers
Topics
Authors
Recent
2000 character limit reached

PokéAI: A Goal-Generating, Battle-Optimizing Multi-agent System for Pokemon Red (2506.23689v1)

Published 30 Jun 2025 in cs.AI and cs.MA

Abstract: We introduce Pok\'eAI, the first text-based, multi-agent LLM framework designed to autonomously play and progress through Pok\'emon Red. Our system consists of three specialized agents-Planning, Execution, and Critique-each with its own memory bank, role, and skill set. The Planning Agent functions as the central brain, generating tasks to progress through the game. These tasks are then delegated to the Execution Agent, which carries them out within the game environment. Upon task completion, the Critique Agent evaluates the outcome to determine whether the objective was successfully achieved. Once verification is complete, control returns to the Planning Agent, forming a closed-loop decision-making system. As a preliminary step, we developed a battle module within the Execution Agent. Our results show that the battle AI achieves an average win rate of 80.8% across 50 wild encounters, only 6% lower than the performance of an experienced human player. Furthermore, we find that a model's battle performance correlates strongly with its LLM Arena score on language-related tasks, indicating a meaningful link between linguistic ability and strategic reasoning. Finally, our analysis of gameplay logs reveals that each LLM exhibits a unique playstyle, suggesting that individual models develop distinct strategic behaviors.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.