Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Geminet: Learning the Duality-based Iterative Process for Lightweight Traffic Engineering in Changing Topologies (2506.23640v1)

Published 30 Jun 2025 in cs.NI and cs.LG

Abstract: Recently, researchers have explored ML-based Traffic Engineering (TE), leveraging neural networks to solve TE problems traditionally addressed by optimization. However, existing ML-based TE schemes remain impractical: they either fail to handle topology changes or suffer from poor scalability due to excessive computational and memory overhead. To overcome these limitations, we propose Geminet, a lightweight and scalable ML-based TE framework that can handle changing topologies. Geminet is built upon two key insights: (i) a methodology that decouples neural networks from topology by learning an iterative gradient-descent-based adjustment process, as the update rule of gradient descent is topology-agnostic, relying only on a few gradient-related quantities; (ii) shifting optimization from path-level routing weights to edge-level dual variables, reducing memory consumption by leveraging the fact that edges are far fewer than paths. Evaluations on WAN and data center datasets show that Geminet significantly improves scalability. Its neural network size is only 0.04% to 7% of existing schemes, while handling topology variations as effectively as HARP, a state-of-the-art ML-based TE approach, without performance degradation. When trained on large-scale topologies, Geminet consumes under 10 GiB of memory, more than eight times less than the 80-plus GiB required by HARP, while achieving 5.45 times faster convergence speed, demonstrating its potential for large-scale deployment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.