Papers
Topics
Authors
Recent
2000 character limit reached

Passage-traversing optimal path planning with sampling-based algorithms (2506.23614v1)

Published 30 Jun 2025 in cs.RO and cs.CG

Abstract: This paper introduces a new paradigm of optimal path planning, i.e., passage-traversing optimal path planning (PTOPP), that optimizes paths' traversed passages for specified optimization objectives. In particular, PTOPP is utilized to find the path with optimal accessible free space along its entire length, which represents a basic requirement for paths in robotics. As passages are places where free space shrinks and becomes constrained, the core idea is to leverage the path's passage traversal status to characterize its accessible free space comprehensively. To this end, a novel passage detection and free space decomposition method using proximity graphs is proposed, enabling fast detection of sparse but informative passages and environment decompositions. Based on this preprocessing, optimal path planning with accessible free space objectives or constraints is formulated as PTOPP problems compatible with sampling-based optimal planners. Then, sampling-based algorithms for PTOPP, including their dependent primitive procedures, are developed leveraging partitioned environments for fast passage traversal check. All these methods are implemented and thoroughly tested for effectiveness and efficiency validation. Compared to existing approaches, such as clearance-based methods, PTOPP demonstrates significant advantages in configurability, solution optimality, and efficiency, addressing prior limitations and incapabilities. It is believed to provide an efficient and versatile solution to accessible free space optimization over conventional avenues and more generally, to a broad class of path planning problems that can be formulated as PTOPP.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.