Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tensor Train Quantum State Tomography using Compressed Sensing (2506.23560v1)

Published 30 Jun 2025 in quant-ph, cs.AI, eess.SP, and math.OC

Abstract: Quantum state tomography (QST) is a fundamental technique for estimating the state of a quantum system from measured data and plays a crucial role in evaluating the performance of quantum devices. However, standard estimation methods become impractical due to the exponential growth of parameters in the state representation. In this work, we address this challenge by parameterizing the state using a low-rank block tensor train decomposition and demonstrate that our approach is both memory- and computationally efficient. This framework applies to a broad class of quantum states that can be well approximated by low-rank decompositions, including pure states, nearly pure states, and ground states of Hamiltonians.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube